Conservation of a pseudomonad-like hydrocarbon degradative ferredoxin oxygenase complex involved in rhizopine catabolism in Sinorhizobium meliloti and Rhizobium leguminosarum bv. viciae.
نویسندگان
چکیده
In Sinorhizobium meliloti the mocCABR genes have previously been shown to be required for rhizopine (3-O-methyl-scyllo-inosamine, 3-O-MSI) catabolism. We show that the mocDE(F) gene cluster is also needed. MocDE(F), which is involved in the catabolism of 3-O-MSI to its demethylated form scyllo-inosamine (SI) has homology to components that would comprise a ferredoxin-oxygenase system. The mocCABRDE(F) suite of genes is required for 3-O-MSI catabolism in both S. meliloti and R. leguminosarum bv. viciae. However, SI catabolism in S. meliloti requires mocCABR, whereas only mocCA are required for its catabolism in R. leguminosarum suggesting the two species require different chromosomal genes which act in concert with moc genes for the catabolism of rhizopine.
منابع مشابه
A model for the catabolism of rhizopine in Rhizobium leguminosarum involves a ferredoxin oxygenase complex and the inositol degradative pathway.
Rhizopines are nodule-specific compounds that confer an intraspecies competitive nodulation advantage to strains that can catabolize them. The rhizopine (3-O-methyl-scyllo-inosamine, 3-O-MSI) catabolic moc gene cluster mocCABRDE(F) in Rhizobium leguminosarum bv. viciae strain 1a is located on the Sym plasmid. MocCABR are homologous to the mocCABR gene products from Sinorhizobium meliloti. MocD ...
متن کاملSugar-binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae.
Transgenic alfalfa (Medicago sativa L. cv Regen) roots carrying genes encoding soybean lectin or pea (Pisum sativum) seed lectin (PSL) were inoculated with Bradyrhizobium japonicum or Rhizobium leguminosarum bv viciae, respectively, and their responses were compared with those of comparably inoculated control plants. We found that nodule-like structures formed on alfalfa roots only when the rhi...
متن کاملRegulation of exopolysaccharide production in Rhizobium leguminosarum biovar viciae WSM710 involves exoR.
A mildly acid-sensitive mutant of Rhizobium leguminosarum bv. viciae WSM710 (WR6-35) produced colonies which were more mucoid in phenotype than the wild-type. Strain WR6-35 contained a single copy of Tn5 and the observed mucoid phenotype, acid sensitivity and Tn5-induced kanamycin resistance were 100% co-transducible using phage RL38. WR6-35 produced threefold more exopolysaccharide (EPS) than ...
متن کاملDifferent species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils.
Abstract A collection of 160 isolates of rhizobia nodulating Phaseolus vulgaris in three geographical regions in Tunisia was characterized by restriction fragment length polymorphism analysis of polymerase chain reaction (PCR)-amplified 16S rDNA, nifH and nodC genes. Nine groups of rhizobia were delineated: Rhizobium gallicum biovar (bv.) gallicum, Rhizobium leguminosarum bv. phaseoli and bv. v...
متن کاملExpression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa.
1-Aminocyclopropane-1-carboxylate (ACC) deaminase has been found in various plant growth-promoting rhizobacteria, including rhizobia. This enzyme degrades ACC, the immediate precursor of ethylene, and thus decreases the biosynthesis of ethylene in higher plants. The ACC deaminase of Rhizobium leguminosarum bv. viciae 128C53K was previously reported to be able to enhance nodulation of peas. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular microbiology and biotechnology
دوره 2 3 شماره
صفحات -
تاریخ انتشار 2000